Markov Processes with Restart

نویسندگان

  • Konstantin Avrachenkov
  • Alexei B. Piunovskiy
  • Yi Zhang
چکیده

We consider a general honest homogeneous continuous-time Markov process with restarts. The process is forced to restart from a given distribution at time moments generated by an independent Poisson process. The motivation to study such processes comes from modeling human and animal mobility patterns, restart processes in communication protocols, and from application of restarting random walks in information retrieval. We provide a connection between the transition probability functions of the original Markov process and the modified process with restarts. We give closed-form expressions for the invariant probability measure of the modified process. When the process evolves on the Euclidean space there is also a closed-form expression for the moments of the modified process. We show that the modified process is always positive Harris recurrent and exponentially ergodic with the index equal to (or bigger than) the rate of restarts. Finally, we illustrate the general results by the standard and geometric Brownian motions. Key-words: Markov Processes with Restart, Positive Harris Recurrence, Exponential Ergodicity, Standard and Geometric Brownian Motions ∗ INRIA Sophia Antipolis, France, [email protected] † The University of Liverpool, Department of Maths Sciences, M&O Building, L69 7ZL, UK, [email protected] ‡ The University of Liverpool, Department of Maths Sciences, M&O Building, L69 7ZL, UK, [email protected] ha l-0 07 10 21 7, v er si on 1 20 J un 2 01 2 Les Processus de Markov avec Redémarrage Résumé : Nous considérons un processus de Markov en temps continu qui est général, honnête et homogène. Le processus est forcé à redémarrer à partir d’une distribution donnée à des moments de temps générés par un processus indépendant de Poisson. La motivation pour étudier ce type de processus vient de la modélisation de la mobilité humaine et animale, des procédures avec le redémarrage dans les protocoles de communication et de l’application des marches aléatoires avec le redémarrage en recherche d’information. Nous fournissons une connexion entre les fonctions de probabilité de transition du processus de Markov originale et du processus modifié avec le redémarrage. Nous donnons des expressions explicites de la mesure invariante du processus modifié. Lorsque le processus évolue dans l’espace Euclidien, il y a également une expression explicite pour les moments du processus modifié. Nous montrons que le processus modifié est à la fois Harris positif récurrent et ergodique exponentiel avec l’indice égal à (ou plus grand que) le taux de redémarrage. Enfin, nous illustrons les résultats généraux par les cas classiques de mouvements Browniens standard et géométrique. Mots-clés : Processus de Markov avec Redémarrage, Positive Harris Recurrence, Ergodicité Exponentiel, Mouvements Browniens Standard et Géométrique ha l-0 07 10 21 7, v er si on 1 20 J un 2 01 2 Markov Processes with Restart 3

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Semi-supervised Video Object Segmentation Using Multiple Random Walkers

A semi-supervised video object segmentation algorithm using multiple random walkers (MRW) is proposed in this work. We develop an initial probability estimation scheme that minimizes an objective function to roughly separate the foreground from the background. Then, we simulate MRW by employing the foreground and background agents. During the MRW process, we update restart distributions using a...

متن کامل

On $L_1$-weak ergodicity of nonhomogeneous continuous-time Markov‎ ‎processes

‎In the present paper we investigate the $L_1$-weak ergodicity of‎ ‎nonhomogeneous continuous-time Markov processes with general state‎ ‎spaces‎. ‎We provide a necessary and sufficient condition for such‎ ‎processes to satisfy the $L_1$-weak ergodicity‎. ‎Moreover‎, ‎we apply‎ ‎the obtained results to establish $L_1$-weak ergodicity of quadratic‎ ‎stochastic processes‎.

متن کامل

Hitting with Restart: A Reason for Sisyphus Labour

Motivated by applications in telecommunications, computer science and physics, we consider a discrete-time Markov process with restart in the Borel state space. At each step the process either with a positive probability restarts from a given distribution, or with the complementary probability continues according to a Markov transition kernel. The main focus of the present work is the expectati...

متن کامل

On the entrance distribution in RESTART simulation

The RESTART method is a widely applicable simulation technique for the estimation of rare event probabilities. The method is based on the idea to restart the simulation at certain intermediate stages, in order to generate more occurrences of the rare event. In many cases we are interested in the (rare) event that a real-valued function of some Markov process exceeds a high level. We explore the...

متن کامل

Restart Probability Model

We discuss a new applied probability model: there is a system whose evolution is described by a Markov chain (MC) with known transition matrix on a discrete state space and at each moment of a discrete time a decision maker can apply one of three possible actions: continue, quit, and restart MC in one of a finite number of fixed “restarting” points. Such a model is a generalization of a model d...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Applied Probability

دوره 50  شماره 

صفحات  -

تاریخ انتشار 2013